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Introduction

One of the most pressing challenges in modern science and technology is to cope with the massive
amounts of data that are recorded in the digital world we live in today. Indeed, the 21st century
is often referred to as the ‘century of data’ and terms like ‘data deluge’ and ‘big data’ are now
popular ways to describe this situation. Data can come in very di↵erent guises and it can mean
several things. One instance which produces heavy loads of data is the internet (think of the ⇠
300 million photos uploaded to facebook each day), other examples are wireless communication,
stock prices, or medical imaging applications. Taken together, the amount of data which exists is
currently estimated to exceed 3000 billion Gigabytes and it is growing fast. Facing these dazzling
figures, major data processing tasks, including e�cient storage, analysis and transmission, seem
all the more challenging. Fortunately, it turns out that most of the time the information content
of data is much smaller than its actual storage complexity and there exists great potential for
significant compression. For instance the JPEG2000 image compression standard is capable of
storing only a small fraction of the bits which would be needed in a naive representation with
no distinguishable loss of information, see Figure 1.

Figure 1: Example for image compression. Left: original image. Right: Compressed image only
requiring around 5% of the storage required for original image.

How is this possible? The secret lies in finding a smart representation for generic images and
this is where mathematics comes into play. For a mathematician data is simply described by a
function f . For a black and white image, this function would simply associate to each pixel its
brightness or intensity. One idea to reduce complexity and to compress f is to find a dictionary
{fi}i of template signals and to try to represent f as a linear combination of these templates,
e.g.

f =
X

i

cifi, ci 2 R.

If most values ci in this representation are zero (or very close to zero) we speak of a ‘sparse
representation’. In that case the signal can be compressed by storing only the few nonzero coef-
ficients. An example is shown in Figure 2: here an image is represented in a wavelet-dictionary.
As we can see, almost all representation coe�cients are of neglibible size and we can discard
them. This sparse wavelet representation lies behind the JPEG2000 compression standard.

Di↵erent types of data possess di↵erent characteristic features and thus require di↵erent ways
for their e�cient representation. The following quote from David Donoho, one of the very most
successful and innovative figures in the field of mathematical data processing, at the occation
of his plenary address at the international conference of mathematics [12] from 2002 pointedly
sums this up as follows:

Information has its own architecture. Each data source, whether imagery, sound,
text, has an inner architecture which we should attempt to discover and exploit for

May 18, 2015



The Mathematics of Data Representations 2

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 2: Wavelet representation of image. Left: original image. Right: Representation of the
same image in a wavelet representation system. The color coding represents the magnitude of
the representation coe�cients (ci) (dark coe�cients are close to zero). We see that almost all
coe�cients are close to zero and can thus be neglected.

applications such as noise removal, signal recovery, data compression, and fast com-
putation.

So the challenging problem is to find representation systems which are optimally adapted to a
given class of signals. It is quite striking that the notion of ‘optimality’ can be precisely described
mathematically and that in many cases one can precisely quantify the interplay between accuracy
of a compression and the number ob bits required to represent the compressed data. For this
reason mathematics has played and still plays a major role in developing new and e�cient
algorithms for data processing.

In my research I introduce sophisticated geometric techniques to refine and expand the scope of
existing numerical methods for the e�cient representation of data. The focus lies both on laying
out a rigorous mathematical foundation as well as implementation of the resulting algorithms
on a computer. I want to emphasize that the mathematical foundation (e.g. a proof that the
algorithm works) is at least as important as its e�cient implementation – it serves as a safe-
guard that the algorithm is actually doing what we expect in all cases and that no important
information is lost (it is easy to think of examples where such an information loss would have
devestating consequences).

I have been able to make progress on problems as diverse as the numerical solution of geomet-
ric partial di↵erential equations, geometric multiscale analysis, data compression, the numerical
solution of kinetic transport equations, computer aided geometric design and architectural ge-
ometry.

In the following sections I describe a few highlights of my past research. The reader will notice
that these di↵erent projects concern a rather diverse spectrum of problems. What they all have
in common is that the key to their solution lies in finding e�cient data representations.

Approximation of Manifold-Valued Data

In recent years the numerical approximation and representation of functions which take their
values in a curved space (think for instance of data given by directions, assuming its values on the
unit sphere) has become increasingly important. For instance in signal processing they appear in
medical imaging (Di↵usion Tensor MRI [27]), robotics (motion design [25]), chromaticity image
denoising [38], and many others, see Figure 3.

All these scenarios have in common that the signal model is given by functions defined on a
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Figure 3: Examples of manifold-valued data. Left: Di↵usion Tensor MRI. Here an ellipsoid is
attached to each pixel. These ellipsoids describe the directional preferences for the di↵usion of
water molecules in the brain. This information is used for instance to track brain fibers. Right:
Lie Group model of the human spine from [25]. Here the joints of the spine are modeled by
rotation matrices.

linear space and assuming its values in a nonlinear manifold (think of an image where not an
intensity is attached to each pixel but for instance a direction, a tensor or another geometric
object). In order to properly handle such non-linear data, radically new methods that respect
the underlying geometric structure, need to be developed. The main di�culty lies in defining
geometrically meaningful (in the sense that natural invariances are preserved) algorithms with
the desirable properties of linear methods. My research focuses on the problem of developing
such algorithms to handle nonstandard data types and on analyzing them theoretically. Due to
the additional structure of the data, the necessary mathematical tools to address these problems
include classical approximation theory as well as di↵erential geometry. Since this subject lies at
the intersection of two di↵erent disciplines, many methods in the theoretical analysis have to
be developed from scratch. In past research in this field, I have established several final results
which now represent the current state-of-the-art in the approximation of manifold-valued data.

Important contributions include

• The development of stable multiscale decompositions for manifold-valued data which sat-
isfy the same desirable properties as wavelets for scalar data in [23, 17]. A decomposition
is shown in Figure 4. As our results have shown, for piecewise smooth data, most decom-
position coe�cients are of negligible size which results in substantial compression rates.

• Further, I have obtained a complete solution of the smoothness equivalence conjecture for
nonlinear refinement schemes which operate on data in a Riemannian manifold [23, 15,
16], as posed by David Donoho and collaborators in 2005 [39]. Applications for nonlinear
refinement schemes include computer graphics and motion design [40]

• In another contribution [22] we introduced a novel denoising and inpainting of corrupted
manifold-valued images, see Figure 5 for a particular example. Due to its fast convergence
speed (which can be justified rigorously) our algorithm consistently outperforms current
state-of-the-art methods, such as [41].

• A more recent research project concerns the numerical approximation of partial di↵erential
equations (PDEs) evolving in manifolds. In these cases, the data is not given explicitly to
us but implicitly, as the solution of a typically highly complicated nonlinear equation. Such
problems arise for instance in the simulation of orientations of magnetic moments in micro-
magnetism (where the target manifold is the sphere S2) or directions in nematic crystal
models (where we deal with the so-called projective space P 2) [2, 24]. Other examples
include variational methods for the processing of manifold-valued signals or nonlinear
Cosserat material models which generalize linear elasticity [30, 31].
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The numerical approximation of solutions to such PDEs is di�cult, and because the rel-
evant function spaces do not possess a linear structure, standard discretization methods
cannot be used. Until recently no general method for the numerical approximation of PDEs
as described above with proven convergence rate has been available but in the paper [20]
we provide a complete convergence theory for the numerical approximation of geometric
PDEs by geodesic finite elements which have been introduced in earlier work, indepen-
dently in [19] and [36]. As an example application we obtain the first ever high order
approximation method for the harmonic map equation. What our results essentially say is
that we can, for the first time ever, exactly quantify how much work (in terms of storage
and arithmetic operations to be carried out by a computer) we need to invest in order
to compute the exact unknown solution, up to a desired accuracy. A simulation based on
geodesic finite elements are shown in Figure 6.

Figure 4: Wavelet decomposition of Di↵usion Tensor MRI data [0, 1]2 ! SPD(3), the manifold
of symmetric positive definite 3⇥ 3 matrices. On the left we see the original image, on the right
the magnitude of the transform coe�cients which assume their values in the tangent bundle of
SPD(3).

Figure 5: Inpainting and Denoising of SPD(3)-valued image with algorithm from [22]. Left:
original image. Middle: noisy and lossy image. Right: restored image.

Geometric Multiscale Analysis

For many classes of signals, the topography of information is governed by their singularity
structure. To give an example, think of an image. Intuitively it is clear (and this fact has been
exploited for several decades) that the major information in most images is contained in its
edges. In the introduction we have mentioned the JPEG2000 standard which is based on wavelet
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Figure 6: Liquid crystal simulation (Source: O. Sander).

dictionaries. It turns out that these dictionaries are actually suboptimal for the representation
of edge singularities, see Figure 7.

Figure 7: Most information in typical images is contained in its edges.

This and many further examples have lead to the emergence of the research area of geometric
multiscale analysis which, roughly speaking, aims at designing optimal representation systems
for multidimensional data with curved, anisotropic singularities of intermediate dimension.

A milestone in this area has been the construction of curvelet [9] and shearlet [26] representation
systems which are indeed capable of optimally resolving curved singularities in multidimensional
data.

Below are some contribution to the research field of geometric multiscale analysis.

• After the breakthrough result [9] new constructions of anisotropic representation systems
have been introduced which achieve the same optimal compression rates for images with
edge singularities. The recent work [18] introduced the framework of parabolic molecules
which subsumes all the earlier constructions mentioned above and which established a
transference principle of approximation results between any two systems of parabolic
molecules. This meta result provides a deeper understanding of the properties a system has
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to satisfy in order to sparsely approximate anisotropic functions and for e↵ortless proofs
of many results which otherwise would require dozens of pages. What these result also
show is that the great compression properties of curvelets hold for a much wider class of
representation systems.

• Data with anisotropic singularities not only appears in images but also typical solutions of
a particular class of partial di↵erential equations, so-called transport PDEs exhibit these
features. Equations of this type appear for instance in the numerical discretization of
kinetic transport equations (modeling e.g. gas dynamics or radiative transport, see below)
and in phase contrast imaging. In [21] we used a di↵erent kind of representation system, so
called ridgelets, for the representation of solutions of transport equations. This construction
lets us, for the first time, solve such equations in optimal complexity. Given a prescribed
error tolerance we can exactly quantify the amount of work (arithmetic operations) to
be carried out to represent the sought solution up to this tolerance. Again, the relation
between accuracy and computational e↵ort turns out to be optimal and in particular vastly
superior to previous methods.

Kinetic Transport Equations

This project is concerned with the Boltzmann equation, derived by Ludwig Boltzmann in 1872
to describe the statistical behavior of the dynamics of a dilute gas. Even though the Boltzmann
equation has its origins in the area of statistical physics, it has by now transcended this purpose
and is nowadays widely used whenever a fully microscopic deterministic description of a multi-
particle system is too costly or not informative and a macroscopic (fluid-dynamic) description
is too inaccurate to reliably model the actual behavior. Applications of interest include the
description of the collective behavior of species in socio-economic models, various probabilistic
models in population biology and molecular biology, high energy physics, hydrodynamics or
plasma modeling. Related equations are the so-called ‘master equation’ in chemistry or the
radiative transport equation. Often, particular interest lies in the extraction of macroscopic
quantities which are usually given as velocity moments of the probability density u which solves
the Boltzmann equation.

The mathematical and computational challenges posed by the Boltzmann equation (and its
many variants) are formidable. n recent years a number of attempts have been made towards
design and development of e�cient solvers but no satisfactory methods with provably optimal
convergence rates have been found as of today.

Again, the key to an e�cient solution of the Boltzmann equation is to find a suitable rep-
resentation system which is well adapted to the equations and which captures accurately the
main features of typical solutions. In [14] we have constructed such a representation system and
designed and implemented an e�cient algorithm for the numerical solution of the Boltzmann
equation. This algorithm is the first of its kind in the sense that it captures the main physi-
cal properties of the exact equation, while possessing very good approximation properties. A
simulation is shown in Figure 8.

Discrete Di↵erential Geometry

The goal to design arbitrary freeform surfaces comes with a number of challenges (good structural
properties, low cost, ...). To overcome some of them it has proven beneficial to utilize concepts of
classical di↵erential geometry. In fact the connection between freeform architecture and geometry
has been so fruitful in the past few years that it has ignited the flourishing research area of
architectural geometry [32].
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Figure 8: Simulation of the evolution of the air pressure in the Mach 3 wind tunnel experiment.
The simulation is based on a polar spectral discretization of the Boltzmann equation. Joint work
with S. Pintarelli and R. Hiptmair (ETHZ).

Recent research in architectural geometry has identified class of discrete surfaces, so-called Edge
O↵set meshes (quadrilateral meshes with planar faces, possessing a combinatorially equivalent
o↵set mesh with planar faces and parallel edges with a fixed edge distance), as particularly
desirable for applications [35], see Figure 9.

Figure 9: Left: Edge o↵set meshes are attractive candidates for architectural design since they
give rise to the cleanest possible nodes in a supporting structure with beams of constant height
Right: Architectural design based on discrete Enneper-type Laguerre minimal surface from [33].

This class of discrete surfaces a natural entity of a specific kind of geometry, so called Laguerre
geometry. In view of form finding e.g. for architecture it is often useful to look for surfaces
which are extremals of certain geometric energies. My research in this direction has focused
on so-called Laguerre minimal (L-minimal) surfaces which arise as local extrema of a natural
Laguerre geometric energy. We have studied these surfaces mathematically in [34] and [37] and
constructed an algorithm for the e�cient discrete representations of those as edge o↵set meshes
which can then be used for architectural design in [33].
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